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Mixing of two microwaves and emission of low-frequency 
waves from a plasma slabT 

SUNITA JAYARAM and V. K.  TRIPATHI 
Department of Physics, Indian Institute of Technology, New Delhi-29, India 
M S .  received 8th October 1969, in re7ised form 2nd March 1970 

Abstract. The  generation of vlf waves as a result of nonlinear interaction of two 
microwaves with a plasma slab in the presence of a high dc field is investigated 
theoretically. The  reflected and transmitted vlf power comes out to be very 
high compared with the case for high-frequency waves. The  generated vlf 
power is found to be maximum for an optimum value of the nonlinearity 
parameter, which is a function of carrier mass, collision frequency and mass of 
the scatterer. The  vlf power is also found to show maxima and minima at various 
slab thicknesses. 

1. Introduction 
Harmonic generation and nonlinear mixing of electromagnetic waves in plasmas 

have been investigated extensively in recent years and found useful for plasma 
diagnostics (Ginzburg 1960, Kroll et al. 1964, Krenz 1965, Stern and Tzoar 1966, 
Sodha and Kaw 1966, Dienys and Pozhela 1966, Kaw 1968, Kuhn et al. 1968, 
Richter and Bonek 1968, Kaw 1969). Most of the early workers considered nonlinear 
mixing in the high-frequency region, due to collisions. Ginzburg (1960), however, 
studied the vlf region in a plasma ( w  < S v ;  w is the wave frequency, v is the collision 
frequency and S = 2m/M where m is the electron mass and is the mass of the 
molecule or neutral particle) and showed that, at these frequencies, the time-varying 
nonlinear phenomena would be more evident than at high frequencies. 

Kaw (1969) has recently investigated the vlf second harmonic generation in a 
simple model semiconductor. Practically, vlf waves are highly damped in the absence 
of a static magnetic field and their penetration in the semiconductor is very small, 
therefore high yields of harmonics cannot be expected at such frequencies. However, 
if two low-frequency waves (Sv < < v) interact with a plasma, a difference 
frequency wave is generated. When the difference frequency falls in the vlf region, 
high yield of vlf power is expected. Turlock and James (1968) have investigated the 
problem of nonlinear mixing of two microwaves to give rise to a vlf 
( (wl- w 2 /  Q wl, w2)  wave in a cylindrical plasma column using the elementary 
approach. They have considered the mutual interaction of fundamental current 
densities with the magnetic fields of the waves as the only mechanism responsible for 
mixing. In  this paper we have investigated the generation of vlf waves as a result of 
nonlinear mixing of two microwaves of nearly the same frequencies, w1 and w2, in 
a plasma or a semiconducting slab in the presence of a high dc field. In  this geometry 
the mutual interaction of current densities with the magnetic field of the waves does 
not give rise to appreciable transverse current or electric field. Therefore the col- 
lisional mechanism is dominant for the vlf wave generation. 

In  § 2 the Boltzmann equation for electrons in an electron-neutral particle 
collision-dominated plasma or an acoustic phonon scattering-dominated semiconduc- 
tor has been solved by expanding the distribution function in Cartesian tensors and 
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retaining terms up to second-order tensor f2. The expressions for the fundamental 
and difference frequency components of the current density ha1.e been obtained in 
$3 .  In  $ 4 the wave equation has been solved and the expressions for the fields of the 
difference frequency wave in the reflected and transmitted waves have been obtained. 

2. General theory 
Let us consider a homogeneous plasma slab with its interfaces at 2 = 0 and 

Z = a. A dc electric field is applied along the x direction. Two microwaves of nearly 
the same frequencies, w1 and w2,  are incident normally from the free-space side 
(2  < 0). The  electric vectors of the incident waves are in the x direction. Inside the 
plasma the distribution function of electron velocity v satisfies the Boltzmann trans- 
port equation which, on using thc Cartesian tensor expansion of the distribution 
function 

V vv s = fo +fl . - + f2 : - + . . . , 
Z' 2'2 

gives the following equations : 

m L Z  

e a  na 1 a 
AI 2'2 22' 

;ifi eE ?fo 2e a e B  X f l  (v3E . f2) -  - = -.fi (2) Ofo-  - - -+;7,  v .  f 2 -  -- 
d t  m %v 5" 2c mc 

and 

where the symbols have their usual meaning (Shkarofsky 1968). I n  equations (1) to 
(3) the collision term derived by Desloge and Matthysse (1960) for electron-neutral 
particle collisions has been used. The  same collision term is applicable for the 
scattering of electrons by acoustical phonons, with the only change of the mass of the 
scatterer M by the effective mass kT/eS2 of the phonon (Shockley 1951), where k, T 
and z!, are the Roltzmann constant, the lattice temperature and the velocity of sound 
inside the medium respectively. The  electric field E appearing in these equations can 
be written as 

E = E ,  + E ,  exp( iw,t) + E ,  exp( iw2t) + E ,  - exp(i(wl - w2)t} 

where E ,  - is the generated field. The  other harmonics and combination frequency 
components of the fields will also be present but we are not interested in these 
components as they lie above the vlf region and have already been investigated by 
earlier workers; these components are much weaker than the incident fields. The  
distribution function is then expanded in time harmonics as 

f ,  = fso +fsl exp( i q t )  + f s 2  exp( iwzt)  +fS1-, exp{i(w, - w2)t). 

The  time-independent and wl, w 2  frequency components (fundamental) of f,, 
from equation (2), come out respectively as 

eE, 2foo 
mv i3v 

f o = - -  1 2  (4) 
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and 

In  deriving the expressions (4) and ( 5 )  we have neglected terms of the order of 
Z'th2/vph2 and Z 'd2 /?J th2 ,  where vth, ?Jd and ?Jph are the electron thermal, electron drift 
and wave phase velocities respectively. In  an equilibrium plasma Z'd2/Z'tl: is always 
less than the ratio 2m/M (Ginzburg 1960). 

f o o  andfo1s2 appearing in equations (4) and (5) are to be obtained from equation (1) 
which in these cases leads to the following equations: 

v 2  P f o o  e 2 m 1 d 
M z  GV 3~ 2Z2 3ma2av  

{v2(Eo , f lo  +;El .fll* + &E2 . j 1 2 * ) )  = - --___-___ 

and 

where * denotes the complex conjugate. The first term in equation ( 6 ) ,  for high 
fields, comes out to be of the order of 

(where x1 and ql are the damping coefficient and refractive index corresponding to 
the fundamental wave) compared with the last term, while it is still smaller for weak 
fields and hence can be neglected. Further, in the approximation of high dc fields 
(Eo2 % EIE1*, EzE2*) the space-independent part of f a o  is much greater than the 
space-dependent part. It is also easy to see from equation (6a) that the effect of 

fo1s2  onfl1S2 comes out to be of the order of ud2v/?Jth2W1,2 which affects the real part of 
the refractive index of the fundamental waves by an order of mjM if up2 < ev2 
(where w p  is the plasma frequency and E is the lattice dielectric constant) and by an 
order of ~ V / O J ~ , ~  if this inequality does not hold. However, its effect on the imaginary 
part of the refractive index comes out to be of the order of mjiyr in both the cases. 
Therefore the last term in equation (5) can be neglected. Then in the limit v2 % w2, 
equation ( 6 ) ,  on using equations (4) and (5), has the following solution: 

ma dv 
fOo ac exp[- 1' (7 )  kT{ 1 + e2M(ElE,* + E2E2* + 2E02)/6m2k Tv2) 

For a weakly ionized plasma or acoustic phonon scattering-dominated semiconductor, 
i.e. v = vou (where ZL = (m/2KT)1'2-~ being the dimensionless electron velocity), 
this results in 

fao = N0(u2 + C C ) ~  exp( - u2) (7a)  
where I/. = clo(EIEl* + E2E2* + 2EO2) is the nonlinearity parameter, 

cq, = e2~4!l/6m2kTvo2 

and N o  is the normalization constant which is essentially a function of CY. In  the limit 
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of not too strong microwaves (El,' < E,) the nonlinearity parameter reduces to 
E = 2xoEO2. For the particular case of tl B 1, equation (7a) reduces to 

the well-known Druyvesteyn distribution function (Ginzburg 1960). 

I w1 - w2 I < v, reduces to 
For the difference frequency ( w1 - w2)  component of fl, equation (Z), in the limit 

The other terms come out to be of the order of (m/ik!)v/wl,z times the retained terms, 
therefore these terms have been neglected. In  the evaluation of f12-2, we need 
fo1-2 which from equation (1) is given by 

e2(ElE2* i- 2EoEl -2)&? 1 2fOo 
i U  3m2kTvo2 U' au 3m2v02k T U' %ai ' 

(9) - - e2E02,iZa 1 ifo1-2 
--= - _  2 f o l - 2  + 2Zlf01 - -t 

The  solution of this equation in the limit of Eo2 is 

53 

u2(u2 + x ) " ( x / ( u 2  + tl) + ln(u2 + E ) }  exp( - u2) du 

(11) 
- 0  qcl) = ___________-__ 1: u2(u2 +K)" exp( - U') du 

'l'he constant of integration of equation (10) has been evaluated by assuming that the 
time-dependent part of electron density is negligible (Kaw 1969), i.e. 
Jrv2f01-2 du N 0. We are justified in assuming this because the space variations of 
density have already been neglected. Now with this expression (10) for fO1-', 

equation (8) gives the following solution: 

eE, 
WLV EO2 2k T 

iE,E,* + 2E,El I 2 )  ( m 1 
f1,1-2 = - N o K  - ( z L ~ + c x ) " - ~  exp( - 2 2 )  

l - E  
- ln(u2 + x )  + K(x)  

x z ? N ~ ( u ~  + x) a - 1  exp( - U') .  

I n  the special case of c/, 9 1, f12-2 comes out to be 

where 
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3. Evaluation of current density 
The  current densities, as defined by 

iu 

J =  -4 3~ Ne / cyl dz! 
0 

for the fundamentals from equations (5) and for the (wl -up)  frequency component 
from equation (12), come out to be 

and 

+ u2 - ln(u2 + ct) + K(a) 

x /," u5 exp( - u2)  (u2 + du 

where w p  = ( 4 ~ N e ~ / m ) ~ ' ~ .  In  the special case CI % 1, the expressions (13) and (14) 
reduce to 

and 

4. Evaluation of electric intensity 
The one-dimensional wave equation is written as 

The  solution of this equation for the fundamental electric fields inside the plasma, on 
using equation (13) is 

El2 = E,,ZP(0) exp( - ikl,Zii=) + E,,ZR(O) exp(ik,,,Z) (16) 

where 
propagating fundamental waves inside the plasma, respectively, and 

and E,,,R are the electric intensities of the forward- and backward- 
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The  variation of the damping coefficients with nonlinearity parameter is shown in 
figure 1. The  damping coefficient decreases with increasing nonlinearity parameter. 

I n  order to determine the amplitudes, E,,zP(0) and E,,2R(0) of the waves, the 
continuity conditions on the tangential component of the electric vector and its 

od 

Figure 1.  Microwave damping coefficient against x for a germanium slab at 78 K 
for w1 = lo l l  rads-' .  Curves A and B correspond to v o  = 10l l s - l  and 
wp2 = 5 x loz3 and l o z 3  (rad s - ~ ) ~  respectively. Curves C and D correspond 
to up2 = 5 x l o z 3  (rad ~ - l ) ~  and v o  = 1 O I 2  and 5 x 10l2 s - l  respectively. 

derivative at the boundaries 2 = 0 and 2 = a are to be imposed. Since the funda- 
mental fields outside the plasma slab are 

El,zi = E1,2(0) exp( - iw,,,Z/c) 
E ; , z r  = El,zr(0) exp(iw1,2Z/c) 

E,,; = E,,,t(a) exp( - iwl,zZ/c) 

for Z < 0 
for 2 < 0 

for 2 > a 
and 

where El,zi is the wave incident on, and E1,2r and El,,t are respectively the reflected 
and transmitted waves from, the plasma slab ; the continuity conditions lead to the 
following expressions for the field amplitudes : 

%,P(0) = 42PE1 ,2 (0 )  (18) 
E,,zR(0) = 42RE1,Zi(0) (19) 
El,zr(0) = (1 -P1,z2.){exp(ik1,z4 - exp( - i k ~ , 2 ~ ) } E 1 , ~ i ( 0 ) / ~ 1 , 2  (20) 

and 

where 

and 
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In  the case of the ( w1 - w2)  frequency component of the intensity, equation (15), 
on using equation (14) ,  reads 

where 

x exp( - u2)(u2 + du 

and 

where r d  and X d  are the refractive index and damping coefficient of the (wl - w e )  
frequency wave. Their variation with tc is shown in figure 2 and they decrease more 
rapidly with U for the difference frequency case than those corresponding to the 

0 0.01 3-, 0.1 I IO 

ff 

Figure 2. VLF damping coefficient and refractive index against M. for a german- 
ium slab at 78 K. Curves A and C correspond to v o  = 1O1I s - l ,  up2 = IOz3 (rad 
s - ~ ) ~  and w1 - w 2  = l o5  and lo6  rad s - l  respectively. Curves B and D cor- 
respond to  up2 = 5 x loz3  (rad s-l)' and y o  = loll w1 - w 2  = l o6  rad s-l, 

and 5 x 1 O I 2  s -l respectively. 
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frequencies. For the special case of 0: B 1, equations (23) and (25) reduce to 

(w,--w )2 i~,,~.v'77(20:) ' 1 k l _ , J  = f c - -  
c2 1 vo(wl - w2)6r(3 /4) i 

and 
i(w, - w 2 )  2 / 7 f ( 2 ~ ) - ~ ' ~ w ~ ~  A = - 

C 2  i zv ,~ , r (3 /4 )  

The  general solution of equation (22) is 

El-2 = E,-2P(0) exp( - ik,-2Z)+El-2R(0) exp(ik,-,Z) 

E,pE2p* + ElREZR* E,PE2R* + EIREzP* 
- + -1 (26) +Ai B, B2 

where 
B, = k l  - 22 - ( k ,  - k2*)' 
B2 = k ,  - 22 - (k, + k2*)' 

and E,  -2p  and E ,  - 2R are the forward- and backt~ard-propagating difference frequency 
wave intensities inside the plasma. 

Outside the plasma slab the difference frequency wave intensities are 

( 2 f )  E ,  - 2r = E ,  - zr(0) exp(i(w, - w 2 ) z / c }  for 2 < 0 
and 

E, -2 t  = E, -;(a) exp{- i(wl- w 2 ) ( 2 - a ) / c }  for Z > a (28) 
as there is no incident difference frequency wave. The  amplitude of the reflected and 
transmitted waves, on applying the continuity conditions to equations (26), (27) and 
(28), come out to be: 

E,  - 2r(0) = ((pl - - 1)' exp( - ik, - 2a) - (8, - + 1), exp( ik, - 2a}-1  

x 1/31 - 2(c1+ C z ) C ( P 1 -  2 - 1) exp( - i k l -  2.) - ( A  - 2 + 1) exp( ik, - 2.)) 
+ ( C ~ + C ~ ) ( ( ~ , - ~ -  1) exp( - ikl -2a)+(p,-2+ 1) exp(ik,-,a)) 

+ 2/31 - 2(c5 + c d  - 2Pl- 2(c7 + %)I (29) 
and 

E,  -;(a) = exp(i( w1 - w2)a/c){(/3, - a - 1)' exp( - ik, - 2a) - (pl - + 
x exp(ik1- 2 4 )  - l W 1 -  2(c1+ c2) -I- 2/31 - 2(c3 + c4) -p1- 2(cg + f6) 
x {(/I1 - + 1) exp( ik, - 2a) - (/3, - - 1) exp( - ik, - 2a)) 

and 
~ ( k ,  - k2") A 

c7 = -___- [AlPA2'*exp{ - i(k, - k2*)a) - AIRAzR*exp(i(k, -k,*)a]]. 
w1-w2 B, 

c6 and cR are obtained from c5 and c7, respectively, by interchanging AZP* and 
AZR* and replacing k2* by - k 2 * ;  c,, c2, c3  and c4 are obtained from cj, cg, c7 and c,, 
respectively, by taking a = 0. The  expressions (29) and (30) show the complicated 
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effects of interference between forward- and backward-propagating fundamental and 
difference frequency waves. These effects are obvious from figure 3,  where the 
variation of the difference frequency reflected wave amplitude with slab thickness is 
plotted for a germanium slab at '78 K. 

x  IO-^ IOr 

Figure 3. Reflected El -z'(0) and transmitted El -2t(u) normalized by E1'(0) 
against slab thickness for Q = 4 and E2'(0)/Eo = 0.2. A and B are the continu- 

ations of C for El -2r(0) and El -zt(a), respectively. 

Figure 4. E1-2r(0) normalized by E1'(0) against Q for Ezi(0)/Eo = 0.5, 
up2 = (rad S - I ) ~  and (a1 -u2) = lo7 rad s-l. Curves A and B correspond 
to v o  = 10I2 and 5 x 10I2 s respectively, in the case of a semi-infinite plasma. 
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XIO-' 1 O . G  

Figure 5 .  Reflected and transmitted difference frequency ware amplitude, 
normalized by E1'(0), against tl for E2'(0)/Eo = 0.2, w1 - w2 = l o 6  rad s - l  and 
for various slab thicknesses (in units of w/c) and various collision frequencies. 
Curves A, D and F correspond to v o  = 5 x 1 0 " ~ - ~  and a = 0.1, 1.0 and 10.0, 
respectively. Curves B, C and E correspond to v o  = 1012s-1 and a = 0.1, 1.0 
and 10.0 respectively. For curve F the ordinate is to be read after multiplying by 4. 

 IO-^ 

A 

. 
I I 

0.0 I 0.1 I I O  3; 4 

Figure 6. Reflected and transmitted difference frequency wave amplitude, 
normalized by E1'(0), against tl for Ezi(0) = w = l o 6  rad s - l  and 
for various slab thicknesses (in units of w/c) and various collision frequencies. 
Curves are numbered as in figure 5 with the same parameters. For curve F the 

ordinate is to be read after multiplying by 10; (w = w1- WZ). 
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In  the limit of a semi-infinite medium (a  -+ CO),  the interference effects are only 
those of the forward-propagating waves and the expression for the reflected wave 
becomes 

{4A C / ( W ~  A W~))E,~E,’* 
E1-2r = 

( k , - , + k , - K , * ) { l  + k , - & / ( w l - w z ) } ( l  + c k , / w , ) ( l + c k , ” / u z )  

The variation of the reflected and transmitted harmonic power with the non- 
linearity parameter and collisions has been shown in figures (4) to (6) for a particular 
case of a germanium slab at 78 K for various collision frequencies. For thin slabs the 
reflected as well as transmitted power decreases with increasing collisions while the 
reverse is the case with thicker slabs. This is due to the fact that the difference 
frequency power is affected by the power absorption of the fundamental waves and 
by the amplitudes of the backward-propagating waves inside the plasma. The  effect 
of increasing collisions is to decrease the generated difference frequency power by 
lowering the power absorption on the one hand, and on the other, to raise the generated 
power by raising the amplitudes of the backward-propagating fundamental waves. 
The former of the two competing phenomena dominates the latter at small thickness, 
while the reverse is true for thicker slabs. 

5. Conclusions 
The damping coefficients of the microwaves as well as the vlf waves decrease with 

the nonlinearity parameter. In  the vlf case the decrease is steeper than in the case of 
microwaves. The  harmonic yield E ,  -zr~t(0)/Eli(O) is very large at low frequencies, 
as much as 0.035 for moderately strong dc fields, E ,  2: 0.3 esu, and E,’(O)/E, = 0.2. 
The  reflected and transmitted harmonic power has maxima and minima at various 
slab thicknesses showing the interference effects. On further increasing the slab 
thickness the amplitude of the reflected power decreases and reaches a saturation 
point while the amplitude of the transmitted power decreases continuously. The  
reflected and transmitted harmonic power come out to be maximum for an optimum 
value of the nonlinearity parameter. This optimum value increases with increasing 
(w1- U,>. 
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